Leica Theodolite 100 Series

Mode d'emploi T105/T110
Version 1.3
Français
Théodolite électronique

Félicitations pour l'achat de votre nouveau théodolite Leica Geosystems

Ce mode d'emploi contient des consignes de sécurité importantes *(reportez vous au chapitre "Consignes de sécurité ")*, ainsi que des instructions concernant la mise en œuvre et l'utilisation de l'instrument.

Une lecture attentive de ces instructions vous permettra d'obtenir le maximum de satisfaction.

Identification du produit

Le type et le numéro de série de votre instrument se trouvent sur la plaque signalétique dans le compartiment à batterie.

Inscrivez ci-dessous le type et le numéro de série de votre instrument, et faites toujours référence à ces *indications* lorsque vous aurez à contacter notre *représentant* ou notre *département de service après-vente*.

Type: ___________ No.de série: __________________________

Signification des symboles

Les symboles utilisés dans ce manuel ont la signification suivante:

DANGER:

Danger directement lié à l'utilisation qui entraîne obligatoirement des dommages corporels importants ou la mort.

AVERTISSEMENT:

Danger lié à l'utilisation ou à l'utilisation non conforme pouvant entraîner des dommages corporels importants ou la mort.

ATTENTION:

Danger lié à l'utilisation ou à une utilisation non conforme à la destination qui ne peut entraîner que de faibles dommages corporels, mais des dommages matériels, pécuniaires ou écologiques considérables.

Information utile qui aide l’utilisateur à utiliser le produit de manière techniquement correcte et efficace.
Sommaire

Introduction

Mise en service de l'instrument

Mesures simples

Configuration

Consignes de sécurité

Entretien et stockage

Accessoires

Messages et avertissements

Données techniques

Mots clés
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Introduction</td>
</tr>
<tr>
<td>6</td>
<td>Caractéristiques particulières</td>
</tr>
<tr>
<td>7</td>
<td>Eléments les plus importants</td>
</tr>
<tr>
<td>8</td>
<td>Termes techniques et abréviations</td>
</tr>
<tr>
<td>10</td>
<td>Mise en service de l'instrument</td>
</tr>
<tr>
<td>10</td>
<td>Clavier</td>
</tr>
<tr>
<td>11</td>
<td>Boutons</td>
</tr>
<tr>
<td>11</td>
<td>AutoOff</td>
</tr>
<tr>
<td>12</td>
<td>Mesures simples</td>
</tr>
<tr>
<td>12</td>
<td>Déballage</td>
</tr>
<tr>
<td>13</td>
<td>Batteries</td>
</tr>
<tr>
<td>14</td>
<td>Mise en place / remplacement de la batterie</td>
</tr>
<tr>
<td>16</td>
<td>Mise en place du trépied</td>
</tr>
<tr>
<td>17</td>
<td>Centrage avec le plomb laser, calage à l'horizontale approximatif</td>
</tr>
<tr>
<td>18</td>
<td>Intensité du laser</td>
</tr>
<tr>
<td>18</td>
<td>Centrage avec l'embase coulissante</td>
</tr>
<tr>
<td>19</td>
<td>Conseils pour la mise en station</td>
</tr>
<tr>
<td>19</td>
<td>Calage à l'horizontale précis avec la nivelle électronique</td>
</tr>
<tr>
<td>20</td>
<td>Mesure</td>
</tr>
<tr>
<td>21</td>
<td>Détermination de la direction Hz</td>
</tr>
<tr>
<td>21</td>
<td>Réglage du cercle Hz</td>
</tr>
<tr>
<td>21</td>
<td>Affichage de l'angle-V</td>
</tr>
<tr>
<td>22</td>
<td>Mesure de l'angle-Hz</td>
</tr>
<tr>
<td>23</td>
<td>Mesure de l'angle-V</td>
</tr>
<tr>
<td>24</td>
<td>Prolongation de lignes droites</td>
</tr>
<tr>
<td>25</td>
<td>Implantation de lignes verticares</td>
</tr>
<tr>
<td>26</td>
<td>Mesure de distance avec les lignes stadimétriques</td>
</tr>
<tr>
<td>27</td>
<td>Erreurs instrumentales</td>
</tr>
<tr>
<td>27</td>
<td>Erreur de collimation horizontale</td>
</tr>
<tr>
<td>27</td>
<td>Erreur de collimation verticale</td>
</tr>
<tr>
<td>28</td>
<td>Détermination de l'erreur de collimation horizontale (c)</td>
</tr>
<tr>
<td>29</td>
<td>Détermination de l'erreur de collimation verticaine (Index V)</td>
</tr>
<tr>
<td>30</td>
<td>Configuration</td>
</tr>
<tr>
<td>31</td>
<td>Réglage du bip</td>
</tr>
<tr>
<td>32</td>
<td>Détermination de l'angle-V</td>
</tr>
<tr>
<td>33</td>
<td>Réglage du contraste d'affichage</td>
</tr>
<tr>
<td>34</td>
<td>Sélection des unités d'angle</td>
</tr>
<tr>
<td>35</td>
<td>V - %</td>
</tr>
<tr>
<td>36</td>
<td>Format de l'affichage des angles</td>
</tr>
<tr>
<td>37</td>
<td>Activation / désactivation du compensateur</td>
</tr>
<tr>
<td>38</td>
<td>Activation / désactivation de la correction de collimation horizontale</td>
</tr>
<tr>
<td>Table des matières, suite</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Consignes de sécurité</td>
<td>39</td>
</tr>
<tr>
<td>Utilisation</td>
<td>39</td>
</tr>
<tr>
<td>Utilisation conforme</td>
<td>39</td>
</tr>
<tr>
<td>Utilisation non conforme</td>
<td>39</td>
</tr>
<tr>
<td>Limites d'application</td>
<td>40</td>
</tr>
<tr>
<td>Domaines de responsabilité</td>
<td>40</td>
</tr>
<tr>
<td>Dangers à l'emploi</td>
<td>41</td>
</tr>
<tr>
<td>Remarques importantes</td>
<td>41</td>
</tr>
<tr>
<td>Classification des lasers</td>
<td>45</td>
</tr>
<tr>
<td>Plomb laser</td>
<td>45</td>
</tr>
<tr>
<td>Compatibilité électromagnétique (EMV)</td>
<td>48</td>
</tr>
<tr>
<td>Déclaration FCC (applicable uniquement aux USA)</td>
<td>49</td>
</tr>
</tbody>
</table>

| **Entretien et stockage** | 50 |
|---------------------------|
| Transport | 50 |
| Sur le terrain | 50 |
| A l'intérieur d'un véhicule ... | 51 |
| Expédition | 51 |
| Stockage | 51 |
| Nettoyage | 52 |
| Contrôle et ajustage | 53 |
| Trépied | 53 |
| Bulle de la nivelle sphérique .. | 53 |
| Bulle de la nivelle de l'embase | 53 |
| Plomb laser | 54 |
| Réticule | 55 |

Accessoires	56
Messages et avertissements	57
Données techniques	59
Mots clés	61
Introduction

Le Leica T105/T110 est un théodolite électronique de haute qualité conçu pour les chantiers de construction. Doté d'une technologie innovante, il rend plus faciles les travaux de topographie quotidiens.

Cet instrument est particulièrement adapté aux travaux simples de topographie de chantier et aux tâches d'implantation.

Son utilisation simplifiée permet de le mettre rapidement entre les mains de topographes inexpérimentés.

Caractéristiques particulières

• Apprentissage rapide et aisé !
• Disposition logique du clavier; affichage LCD large et clairement lisible.
• Présentation attractive; faible poids.
• Réglages utilisateur maintenus après extinction de l'appareil.
• Commandes continues des angles horizontaux et verticaux par vis sans fin.
• Fonction AutoOFF évitant toute consommation inutile.
• Plomb laser compris dans l'équipement standard.
Eléments les plus importants

1 Viseur
2 Lunette
3 Fin calage vertical
4 Batterie GEB111 (en option)
5 Ecarteur de batterie pour GEB111
6 Support de batterie pour GEB111/GEB121/GAD39
7 Mise au point réticule
8 Mise au point image de la lunette
9 Poignée de transport détachable avec vis de fixation
10 Vis calantes
11 Objectif
12 Adaptateur de batterie GAD39 pour 6 piles (en option)
13 Batterie GEB121 (en option)
14 Affichage
15 Clavier
16 Bulle de la nivelle
17 Fin calage horizontal
Termes techniques et abréviations

ZA = Ligne de visée / axe de collimation
Ligne dans l'espace contenant tous les points objet dont l'image est formée sur le centre du réticule à tous les réglages de distance entre le très proche et l'infini.

SA = Axe vertical
Axe vertical de rotation de la lunette, permettant la mesure des angles horizontaux.

KA = Axe horizontal
Axe horizontal de rotation de la lunette, permettant la mesure des angles verticaux.

V = Angle vertical / angle zénithal

VK = Cercle vertical
Avec division circulaire codée pour la lecture de l'angle vertical.

Hz = Horizontal angle

HK = Cercle horizontal
Avec division circulaire codée pour la lecture de l'angle Hz.

Hz0 = Lecture 0° du cercle horizontal (0 gon)
Termes techniques et abréviations, suite

Inclinaison de l'axe vertical
Angle entre le fil à plomb et l'axe vertical

Erreur de collimation horizontale
L'erreur de collimation horizontale (C) est la divergence par rapport à l'angle droit entre l'axe de basculement et l'axe de visée. Lorsqu'on mesure dans les deux positions de la lunette est éliminée.

Erreur de collimation verticale
En cas de visée horizontale, la lecture du cercle vertical doit être d'exactement 90° (100 gon). Toute divergence est qualifiée d’erreur de collimation verticale.

Fil à plomb / Compensateur
Direction de la gravité. Le compensateur définit la direction de la gravité à l'intérieur de l'instrument.

Zénith
Point situé sur la ligne de gravité au dessus de l'observateur.

Réticule
Lame de verre, à l'intérieur de la lunette, sur laquelle se trouvent gravés le réticule et les repères stadiométriques.
Mise en service de l'instrument

Clavier

Touche Combi

Mise en service rapide et simultanée du compensateur, du bip et du contraste d'affichage.

Touches de fonction

Commutation on/off du plomb laser ; réglage de l'intensité du laser

Commutation on/off de l'éclairage et du chauffage de l'affichage (ce dernier est activé au dessous de -5° ; est affiché)

Commutation on/off de la nivelle électronique ; le plomb laser est simultanément activé.

Touches des angles

Réglage de l'angle horizontal et de Hz0.

Orientation de l'angle horizontal à droite et à gauche.

Commutation on/off de l'angle vertical V ; sélection de l'unité d'affichage (% ou V).

Combinaisons de touches

Ces combinaisons permettent une seconde affectation à chacune des touches des angles.

Détermination de l'erreur de collimation horizontale.

Détermination de l'erreur de collimation verticale (erreur d'index)

Appel du menu Configuration

Touches ON / OFF

Allumer l'instrument.

Eteindre l'instrument en appuyant simultanément sur ces deux touches.

Mise en service de l'instrument
Boutons importants:

- **Confirmation de réglages; retour au mode Mesure.**
- **Pagination dans un menu (par ex. dans Configuration).**
- **Sélection d'un réglage. La sélection en cours est toujours indiquée sur la partie gauche de l'affichage.**

Un bouton est un symbole d'affichage qui est toujours affecté à une touche de fonction placée directement au dessous de lui. Les boutons se rencontrent principalement dans le menu Configuration.

Vous trouverez des informations plus détaillées sur les boutons dans les chapitres concernés.

AutoOff

L'instrument est équipé d'une fonction d'extinction automatique.

Elle est activée lorsque:
- la charge de la batterie est faible
- aucune action n’a été exercée sur l'instrument pendant 1/3 heure (= aucune touche activée; déviation des angles V et Hz La fonction AutoOff ne peut pas être désactivée. $\leq 3'$ / $\pm 600cc$).

La fonction AutoOff ne peut pas être désactivée.
Sortir le T105/T110 du coffret de transport et contrôler s’il est bien complet :

1. Clé à six pans creux (2x)
2. Jeu de broches (2x)
3. Embase amovible GDF101 / embase coulissante GUS75 (en option)
4. Chargeur de batterie et accessoires (en option)
5. Batterie GEB111 (en option)
6. Ecarteur GHT196 (en option)
7. Ruban GHM007 (en option)
8. Théodolite
9. Mode d'emploi
10. Capuchon de l'objectif
Votre instrument Leica Geosystems fonctionne avec des batteries rechargeables. Pour les instruments T105/T110 nous recommandons la batterie Basic (GEB111) ou la batterie Pro (GEB121). Avec un adaptateur GAD39 vous pouvez également utiliser six piles. Les 6 piles (1.5 V chacune) ont une tension de 9 volts. L'affichage de l'état de batterie est prévue pour une tension de 6 volts (GEB111/GEB121). L'utilisation de cet adaptateur rend donc l'affichage de l'état erroné. Il est donc conseillé d'utiliser l'adaptateur avec les six piles uniquement comme batterie d'urgence. L'avantage des piles est une autodécharge réduite - même sur une période plus longue.
Mise en place / remplacement de la batterie

1. Enlever le support de batterie
2. Enlever la batterie et la remplacer
3. Insérer la nouvelle batterie dans le support
4. Remettre le support de batterie dans l'instrument

Insérer la batterie correctement (vérifier le marquage des pôles à l'intérieur du support de batterie). Insérer le support dans le bon sens à l'intérieur de son logement.

• Pour le type de batterie, se reporter au chapitre "Données techniques".

Lorsqu'on utilise la batterie GEB 121 ou l'adaptateur de batterie GAC39 pour six piles, il faut enlever l'écarteur pour la batterie GEB 111 du support de batterie avant d'insérer la batterie.
Mise en place du trépied

1. Desserrer les vis des jambes du trépied, tirer ces dernières à la longueur voulue et resserrer les vis.

2. Afin d’assurer la stabilité des pieds, enfoncer suffisamment les jambes du trépied dans le sol. Veiller lors de cette opération à appliquer la force dans la direction des jambes.

Lors de la mise en place du trépied, veiller à ce que le plateau soit en position horizontale.

Les inclinaisons fortes du plateau doivent être corrigées avec les vis calantes de l'embase de l'instrument.

Soins à apporter au trépied

- Vérifier que les vis et boulons sont bien serrés.
- Pendant le transport, mettre toujours en place le couvercle fourni avec le trépied.
- Les éraflures et autres dommages peuvent provoquer un mauvais ajustement et des imprécisions dans les mesures.
- N'utiliser le trépied que pour les tâches topographiques.
1. Placer le tachéomètre sur le plateau du trépied. Serrer modérément la vis de fixation au trépied.
2. Mettre les vis calantes de l'embase en position médiane.
3. Allumer l'instrument avec la touche .
4. Allumer le plomb laser avec la touche . La nivelle électronique apparaît sur l'affichage.
5. Positionner les jambes du trépied de façon que le rayon laser vienne sur le repère au sol.
7. Tourner les vis calantes de l'embase jusqu'à ce que le rayon laser vienne exactement sur le repère au sol.
8. Régler les jambes du trépied de façon à centrer la bulle de la nivelle sphérique. À ce stade, l'instrument est à peu près calé à l'horizontale.
Intensité du laser

Les conditions extérieures peuvent nécessiter un réglage de l’intensité du rayon laser.

- Réglage de l'intensité du laser

Changement d'intensité

Réglages possibles :

- Intensité min.
- Intensité 25%
- Intensité 50%
- Intensité 75%
- Intensité max.

Extinction du plomb laser avec 📀.

Centrage avec l’embase coulissante

Lorsque l'instrument est équipé d'une embase coulissante, il peut être centré sur le repère de station en le déplaçant légèrement.

1. Desserrer la vis.
2. Déplacer l'instrument.
3. Fixer l'instrument en resserrant la vis.
Conseils pour la mise en station Calage à l'horizontale précis avec la nivelle électronique

1. Allumer la nivelle électronique avec la touche \(\text{`}`\). En cas de calage insuffisamment précis, un symbole représentant une nivelle inclinée est affiché.

2. Centrer la nivelle électronique avec les vis calantes.

4. Éteindre la nivelle électronique avec la touche \(\text{`}`\).

Lorsque la nivelle électronique est centrée, l'instrument est calé à l'horizontale.

Mise en station sur un tube ou un trou
Dans certains cas, le plomb laser ne peut être utilisé parce que le point laser n'est pas visible. Ce problème peut être résolu en plaçant une plaque transparente sur le tuyau : le périmètre du tube reste visible et le point laser est réfléchi par la plaque.
Après mise en station et allumage, l'instrument est prêt à effectuer des mesures.

Suivant le réglage, l'affichage suivant apparaît:

Affichage 1

- **Angle-Hz** dans l'unité sélectionnée (voir chapitre "Configuration / Unités d'angle")
- **Etat de la batterie**

Affichage 2

- **Angle-Hz** dans l'unité sélectionnée
- **Angle-V** dans l'unité sélectionnée et en fonction de l'origine choisie, zénith ou horizon (voir chapitre "Configuration / Détermination de l'angle-V")
- **Etat de la batterie**

sont indiqués
Détermination de la direction Hz

- Entrée de l'orientation Hz.
- Retour au menu Mesure sans modification.

Réglage du cercle Hz

- Réglage du cercle Hz.
- Retour au menu Mesure sans modification.

Affichage de l'angle-V

- L'affichage de l'angle-V peut être activé ou désactivé avec.

RÉGLAGE Hz sur 0°00'00"

- Viser le point de référence.
- Réglage Hz sur "Mesure dans le sens des aiguilles d'une montre".
- Retour automatique au menu Mesure.
- Le réglage est immédiatement enregistré.

Introduction d'un angle-Hz quelconque

- Tourner l'instrument jusqu'à la valeur Hz voulue.
- Maintenir cette valeur avec.
- Viser le point de référence.
- Introduire l'angle-Hz avec.

Désactivation de l'affichage de l'angle-V.

Affichage de l'angle-V.

Affichage en fonction des réglages effectués dans Configuration.

Affichage de l'angle-V. Valeur de l'angle en "± % d'inclinaison" (dans les limites de -300.00% à +300.00%).
Recherché:
L'angle-Hz a entre ABC.

Procédure:
Mettre l'instrument en station sur le point A et le caler à l'horizontale.

Deux méthodes sont possibles:
1ère méthode:
• Viser le point B et lire Hz (par ex.: 23°38');
• Viser le point C et lire Hz (par ex.: 94°40').

\[\alpha = \text{Hz (C)} - \text{Hz (B)} \]

(Par ex.: 94°40' - 23°38' = 71°02')

2ème méthode:
• Viser le point B et régler l'angle-Hz sur "0"
• Viser le point C.

Résultat:
Lecture directe d' \(\alpha \).
Mesure de l’angle-V

Recherché:
L’angle-V (angle zénithal)

Procédure:
1. Mettre l’instrument en station sur le point A et le caler à l’horizontale.
2. Viser la plaque-repère.

Résultat:
Lecture directe de l’angle-V.

Volet à flèche : Suivant le réglage initial, c’est l’angle zénithal ou l’angle vertical qui sera affiché (voir le chapitre “Détermination de l’angle-V”).
Prolongation de lignes droites

Recherché: La ligne droite de A à B doit être prolongée. Un nouveau point C doit être créé.

Méthode SIMPLE

1. Mettre l'instrument en station et le caler à l'horizontale.
2. Viser le point B en position I.
3. Tourner la lunette autour de l'axe des tourillons et implanter le point C1 à la distance voulue.
 Pour garantir la précision:
 Distance A-C ≈ distance A-B

Méthode PRECISE

1. Exécuter les étapes 1 à 3 (voir méthode SIMPLE).
2. Tourner l'instrument autour de l'axe vertical et viser à nouveau le point B.
3. Tourner la lunette autour de l'axe des tourillons et implanter un point auxiliaire C2 à la même distance que C1.

Procédure:

1. Mettre l'instrument en station et le caler à l'horizontale.
2. Viser le point B en position I.
3. Tourner la lunette autour de l'axe des tourillons et implanter le point C1 à la distance voulue.
 Pour garantir la précision:
 Distance A-C ≈ distance A-B

Résultat: Le point C est au milieu de la ligne allant de C1 à C2.
Implantation de lignes verticales

Recherché: Le point C doit être implanté à la verticale de B.

Méthode SIMPLE

1. Mettre l'instrument en station sur n'importe quel point A à partir duquel il sera possible de viser aisément sur B et C1.
2. Caler l'instrument à l'horizontale et viser le point B.
3. Basculer la lunette vers le haut et marquer le point correspondant au centre du réticule (C1) à la hauteur voulue.

Méthode PRECISE

1. Exécuter les étapes 1 à 3 (voir méthode SIMPLE).
2. Se mettre en position II de la lunette et viser à nouveau le point B.
3. Basculer la lunette vers le haut et marquer à nouveau le point correspondant au centre du réticule (C2) à la hauteur voulue.

Résultat: Le point C est au milieu de la ligne joignant les points marqués C1 et C2.
Mesure de distance avec les lignes stadimétriques

Recherché: La distance horizontale entre le point de station et un point quelconque

Méthode SIMPLE

Procédure:
1. Mettre l'instrument en station sur le point A et le caler à l'horizontale.
2. Disposer une mire de nivellement à la verticale sur le point B.
3. Viser la mire (z = i) et lire la valeur de la section L.

Résultat:
\[D = 100 \times L \]

Méthode PRECISE

Procédure:
Exécuter les étapes 1 et 2 (voir méthode SIMPLE).
3. Viser la mire (z = i) et lire la valeur de la section L. Relever en même temps l'angle zénithal V.

Résultat:
\[D = 100 \times L \times \sin^2 V \]
Erreurs instrumentales

Les instruments sont ajustés en usine avant d'être livrés.

Les erreurs d'index vertical et de collimation horizontale peuvent se modifier avec le temps et la température.

Pour cette raison, il est recommandé d'effectuer une nouvelle détermination de ces erreurs avant la première utilisation, avant les mesures de précision, après des transports prolongés, avant et après de longues pauses de travail et en cas de différences de température supérieures à 10°C (18°F).

L'erreur de collimation horizontale (C) est la divergence par rapport à l'angle droit entre l'axe de basculement et l'axe de visée.

L'effet de l'erreur de collimation horizontale sur la valeur de l'angle-Hz augmente avec l'angle vertical.

Pour les visées à l'horizontale, l'erreur sur Hz est égale à l'erreur de collimation.

En cas de visée horizontale, la lecture du cercle vertical doit être d'exactement 90° (100 gon). Toute divergence est qualifiée d'erreur de collimation verticale (I).
1. Caler exactement l'instrument à l'horizontale avec la nivelle électronique.

2. Viser un point à environ 100m dans une fourchette de ±5° par rapport à l'horizontale. Vérifier ce dernier point en affichant l'angle vertical.

3. Démarrer la calibration en pressant simultanément les touches et .

5. Changer de position de lunette et viser à nouveau le point.

6. Mesurer à nouveau l'angle Hz avec . L'erreur de collimation horizontale est calculée.

Conserve la valeur en cours

Accepte la nouvelle valeur calculée (flèche).
Détermination de l'erreur de collimation verticale (Index V)

1. Caler exactement l'instrument à l'horizontale avec la nivelle électronique.
2. Viser un point à environ 100m dans une fourchette de ±5° par rapport à l'horizontale. Vérifier ce dernier point en affichant l'angle vertical.
3. Démarrer la calibration en pressant simultanément les touches \(\text{et} \) \(\text{v} \).
4. Mesurer l'angle-V avec \(\text{ou retourner au menu Mesure sans modification avec} \) \(\text{.} \)
5. Changer de position de lunette et viser à nouveau le point.
6. Mesurer à nouveau l'angle-V avec \(\text{L'erreur de collimation verticale est calculée.} \)

En déterminant l'erreur de collimation verticale, on ajuste automatiquement la nivelle électronique.

Conserve la valeur en cours

Accepte la nouvelle valeur calculée (flèche).
Configuration

<table>
<thead>
<tr>
<th></th>
<th>Réglage rapide</th>
<th>Menu Configuration</th>
</tr>
</thead>
</table>
| | Accès immédiat aux fonctions
- compensateur (on/off)
- bip (on/off/90°)
- contraste d’affichage | Après une pression simultanée sur les touches, les paramètres suivants peuvent être sélectionnés
 - bip
 - détermination de l’angle-V
 - contraste d’affichage
 - unités d’angle
 - format de l’affichage des angles
 - compensateur
 - correction de l’erreur de collimation horizontale |
| ![icon] + ![icon] | Sélection de paramètre Sélection des paramètres de configuration
Modification de réglage Le réglage sélectionné est affiché dans la moitié gauche de l’écran
| ![icon] | Sortie Sortie et prise en compte du réglage |

![icon] Tous les réglages resteront actifs, même après extinction de l'instrument.
![icon] Le "réglage rapide" est un extrait du menu Configuration.
Réglage du bip

Le bip est un signal acoustique qui peut être activé lors de la pression de chaque touche ou lors du passage aux angles droits.

Réglages possibles:

- Le bip est activé.
- Le bip est désactivé.
- Le bip est activé aux passages aux angles droits.

Activation du bip:

1. Aller sur la ligne de symboles \[/ \]
2. Sélectionner l'activation avec \[\]
3. Confirmer la sélection avec \[OK \].

Désactivation du bip:

Même procédure, mais en sélectionnant \[\]

Activation du bip 90° pour les implantations à angle droit:

Même procédure, mais en sélectionnant \[\].

Le bip retentit à chaque passage à un angle droit (0°, 90°, 180°, 270° ou 0, 100, 200, 300 gon).

Exemple:

De 95.0 à 99.5 gon (ou de 105.0 à 100.5 gon), on entend un "bip rapide", de 99.5 à 99.995 gon (ou de 100.5 à 100.005 gon), on entend un "bip permanent".
Détermination de l’angle-V

L'orientation "0" du cercle vertical peut être choisie au zénith ou dans le plan horizontal.

1. Aller sur la ligne de symboles
 ⬆️ V / ⬇️ V
2. Sélectionner l'option voulue avec ⬆️ V

3. Confirmer la sélection avec OK.

La sélection est validée pour toutes les unités d'angle et ne peut plus être modifiée que par le menu Configuration.

Angle-V "0" dans le plan horizontal ⬇️ V :

Les angles-V au-dessus du plan horizontal sont affichés en tant que valeurs positives, et les angles au-dessous du plan horizontal en tant que valeurs négatives. L’angle-V augmente ou diminue jusqu’à la valeur maximum de 180° (200 gon).

Angle-V "0" au zénith ⬆️ V :

L’angle V augmente de 0° à 360° (0-400 gon).
Réglage du contraste d'affichage

La lisibilité des LCD est affectée par les conditions environnantes (température, éclairage) et par l'angle de lecture. C'est la raison pour laquelle le contraste d'affichage peut être réglé pas à pas jusqu'à ce qu'une lisibilité parfaite puisse être obtenue;

1. Aller sur le symbole ☼

![Image du symbole](image)

2. Sélectionner le réglage avec ▶

3. Confirmer la sélection avec OK

Le réglage en cours est indiqué et le contraste souhaité est installé.

Le réglage du contraste peut être modifié avec le menu Configuration ou avec le réglage rapide.

Cinq niveaux de contraste sont possibles :

- Minimum
- Contraste 1/4
- Contraste 1/2
- Contraste 3/4
- Maximum

Le contraste d'affichage est ajusté immédiatement lors du réglage.
Sélection des unités d'angle

Le choix des unités d'angle peut être modifié à n'importe quel moment. Les valeurs en cours sont converties en fonction de l'unité choisie. La modification des unités d'angle ne peut être effectuée que dans le menu Configuration.

1. Aller sur la ligne de symboles 360s / 360d / gon / mil.
2. Sélectionner l'option voulue avec.
3. Confirmer la sélection avec OK.

Choix possibles:
- 360s (degrés sexagesimaux)
 valeurs d'angle possibles:
 0° à 359°59'59"
- 360d (degree decimal)
 valeurs d'angle possibles:
 0° à 359.999°
- gon
 valeurs d'angle possibles:
 0g à 399.999 gon
- mil
 valeurs d'angle possibles:
 0 à 6399.99mil
100% correspond à un angle de 45°
(50 gon, 1600 mil)

La valeur en % augmente très vite.
C'est pourquoi "--.--%" apparaît sur l'affichage à environ 70° (80 gon).
Format de l'affichage des angles

Le format de l'affichage des angles peut être choisi suivant trois pas (1, 5 ou 10) et ne peut être modifié qu'avec le menu Configuration.

1. Aller sur le symbole △

Options possibles:

Pour 360°:
- 1 => 0° 00' 01"
- 5 => 0° 00' 05"
- 10 => 0° 00' 10"

Les " sont toujours affichées.

Pour les gon:
- 1 => 0.001 gon
- 5 => 0.005 gon
- 10 => 0.010 gon

Trois décimales sont toujours affichées.

Pour 360°'":
- 1 => 0° 00' 01"
- 5 => 0° 00' 05"
- 10 => 0° 00' 10"

Les " sont toujours affichées.

Pour les mil:
- 1 => 0.01 mil
- 5 => 0.05 mil
- 10 => 0.10 mil

Deux décimales sont toujours affichées.

Dans les exemples qui suivent, seule est montrée l'option indiquée en italiques.

1. Aller sur le symbole △
2. Choisir l'option voulue avec ▶
3. Confirmer la sélection avec OK

H: 123°12'53"
H: 154.209 gon
H: 123.209°
H: 2190.06 mil

Configuration
Activation / désactivation du compensateur

Normalement le compensateur reste activé.

Si l'instrument est utilisé sur un support instable (plate-forme en vibration, navire, etc.) **le compensateur doit être désactivé**. Ceci permet d'éviter que le compensateur ne sorte de son domaine de mesure, ce qui provoque des messages d'erreur interrompant les mesures.

Le domaine d'action du compensateur est de 5’24” (± 0;1 gon). Cette précision horizontale peut être aisément obtenue avec la nivelle électronique.

1. Aller sur la ligne de symboles
 ![Symbole](image)

Options possibles:

- ![Symbole](image)
 - **Le compensateur est activé.** Les angles-V sont mesurés par rapport à la verticale.

- ![Symbole](image)
 - **Le compensateur est désactivé.** Les angles verticaux sont mesurés par rapport à l'axe vertical de l'instrument.

2. Sélectionner l'option voulue avec
 ![Sélectionner](image)

3. Confirmer l'option avec ![Confirmer](image).

L'option choisie pour le compensateur est maintenue, même après extinction de l'appareil.
Activation / désactivation de la correction de collimation horizontale

Le T105/T110 peut corriger automatiquement l'erreur de collimation horizontale. Cette option ne peut être changée que dans le menu Configuration.

Lorsque l'option "Correction de collimation horizontale" est activée, chaque angle horizontal est corrigé (en fonction de l'angle vertical).

En mode opératoire normal, cette correction reste activée.

1. Aller sur la ligne de symboles

2. Choisir l'option voulue avec

3. Confirmer ce choix avec

Options possibles:

- ![Correction activée](image)
 - La correction de l'erreur de collimation horizontale est **ACTIVÉE**.

- ![Correction désactivée](image)
 - La correction de l'erreur de collimation horizontale est **DÉSACTIVÉE**.

Lorsqu'on mesure dans les deux positions de la lunette, l'erreur de collimation horizontale est éliminée.

Vous trouverez des informations complémentaires sur la collimation horizontale dans le chapitre "Détérmination des erreurs instrumentales".

Configuration
Consignes de sécurité

Les avis repris dans ce chapitre sont destinés à permettre aux exploitants et utilisateurs du T105/T110 de reconnaître à temps les dangers d’emploi éventuels, afin de les éviter.

L’exploitant devra s’assurer que tous les utilisateurs comprennent et respectent ces avis.

Utilisation

Utilisation conforme

Les théodolites sont prévus pour les applications suivantes:

• mesure d’angles horizontaux et verticaux
• Visualisation de l’axe vertical (avec le plomb laser)

Utilisation non conforme

• Emploi des théodolites électroniques sans instruction préalable
• Emploi en dehors des limites d’application
• Mise hors service des règles de sécurité.
• Enlèvement de la signalisation de mise en garde ou d’avertissement.
• Ouverture du produit à l’aide d’un outil (tourne-vis…), à l’exception d’une autorisation explicite pour des cas précis.
• Transformations ou modifications opérées sur le produit
• Mettre les instruments en service après un vol
• Utiliser des accessoires d’autres fabricants, non agréés expressément par Leica Geosystems
• Visée directe du soleil
• Mise en sécurité insuffisante du poste de mesure (p. ex. : réalisation de mesures près de routes, etc.)
AVERTISSEMENT:
En cas d’emploi non conforme il y a un danger de blessure, de fonctionnement incorrect et de dégâts matériels.
L’exploitant informera l’utilisateur sur les dangers inhérents à l’emploi de l’équipement et les mesures de protection à prendre pour les éviter.
Le théodolite électronique devra uniquement être mis en service lorsque l’utilisateur aura été instruit en conséquence.

Limites d’application

Environnement:
Approprié à l’emploi en atmosphère vivable pour l’être humain cancel, à ne pas employer dans une ambiance agressive, ou explosif. Un emploi limité dans le temps sous la pluie est admissible.

Voir chapitre "Données techniques".

Domaines de responsabilité

Domaine de responsabilité du fabricant de l’équipement original :
Leica Geosystems AG, CH-9435 Heerbrugg (nommé Leica Geosystems):
Leica Geosystems est responsable de la fourniture impeccable du point de vue de la sécurité technique du produit y compris le mode d’emploi et les accessoires originaux.

Domaine de responsabilité du fabricant d’accessoires étrangers :
Les fabricants d’accessoires étrangers pour le théodolite électronique Leica sont responsables de la mise au point, de la mise en place "mise en application" by "réalisation" et de la communication des concepts de sécurité pour leurs produits, ainsi que de leur efficacité en combinaison avec les produits Leica Geosystems.
Domaine de responsabilité de l'exploitant :

AVERTISSEMENT:
L'exploitant est responsable de l'emploi conforme de l'équipement, de l’affectation de son personnel, de l'instruction de celui-ci et de la sécurité de fonctionnement de l’équipement.

Obligations incombant à l'exploitant :
• Il comprend les informations concernant la protection inscrites sur le produit et les instructions contenues dans le mode d’emploi.
• Il connaît les règles de prévention des accidents en vigueur dans la région.
• Il informera Leica Geosystems s’il constate des défauts de sécurité sur l’équipement.

Remarques importantes

AVERTISSEMENT:
Des instructions manquantes ou incomplètes peuvent provoquer un service incorrect ou un emploi non conforme. Il peut en résulter des accidents ayant pour conséquence de graves dégâts personnels et matériels et des préjudices au patrimoine ou à l’environnement.

Mesures préventives:
Tout utilisateur est tenu de respecter les avis de sécurité du fabricant et les instructions de l'exploitant.

AVERTISSEMENT:
L’utilisation d’un chargeur de batterie non conseillé par Leica Geosystems peut conduire à la destruction des batteries. Cela peut même conduire à un incendie ou à des explosions.

Mesure préventive:
N'utilisez que des chargeurs conseillés par Leica Geosystems pour charger les batteries.
ATTENTION:
Prenez garde aux conséquences néfastes provoquées par l'emploi d'un instrument défectueux, à la suite d'une chute ou autres modifications illicites de l'instrument.

Mesures préventives:
Effectuez régulièrement des contrôles de mesure et les ajustages instrumentaux mentionnés dans le mode d'emploi, surtout après une sollicitation excessive de l'instrument et avant et après chaque mesure importante.

DANGER:
Si vous travaillez avec la canne porte réflecteur et la rallonge dans le voisinage direct d'installations électriques (replace "chemins de fer" by "caténaires" ...), il y a risque d'électrocution.

Mesures préventives:
Respectez une distance de sécurité suffisante par rapport aux installations électriques. Si les opérations dans de telles installations sont inévitables, il y a lieu d'informer au préalable les organismes ou administrations compétentes et de respecter leurs instructions.

AVERTISSEMENT:
Si on effectue des travaux de topographie lors d'un orage, on risque d’être touché par la foudre.

Mesures préventives:
N'effectuez pas de travaux de topographie durant les orages.

DANGER :
Evitez toute visée directe du théodolite électronique vers le soleil. La lunette aura alors l’effet d’une loupe qui peut donc nuire aux yeux ou détériorer l’intérieur de l’appareil de mesure de distance.

Mesures préventives:
Lorsqu’on effectue des visées vers le soleil ou des objets brillants, il est indispensable d’utiliser les accessoires prévus à cet effet.
AVERTISSEMENT:
Lors de reconnaissances ou d'implantations, des accidents peuvent survenir si l'utilisateur ne prête pas attention à l'environnement ou aux obstacles existant entre l'instrument et les points visés (excavations, trafic routier, etc...).

Mesures préventives:
La personne responsable du chantier doit avertir les utilisateurs de l'instrument de l'ensemble des dangers existant.

AVERTISSEMENT:
Des mesures de sécurité insuffisantes sur le lieu du travail peuvent conduire à des situations dangereuses en rapport avec la circulation routière, les sites de construction et les installations industrielles.

Mesures préventives:
Toujours veiller à prendre les mesures adéquates pour assurer la sécurité du lieu de travail. Respecter à cet égard les réglementations officielles, relatives à la prévention des accidents et à la régulation du trafic routier.

ATTENTION:
En cas de fonctionnement prolongé et de température ambiante élevée, la température de la surface du projecteur de visée peut atteindre la limite critique provoquant des douleurs en cas de contact. En remplaçant la lampe halogène, il y a un danger de brûlure de la peau si l'on touche directement le corps de la lampe halogène sans l'avoir laissé refroidir au préalable.

Mesures préventives:
Après une utilisation prolongée, ne toucher le projecteur de visée qu'avec des moyens de protection adéquats (gants, chiffon de laine...). Si possible, laisser refroidir la lampe halogène avant de la remplacer.

ATTENTION:
Une application non conforme de l'équipement peut, par suite de chocs mécaniques (p. ex. chute, coup,...) ou d'une adaptation incorrecte d'accessoires, endommager votre équipement, anéantir l’efficacité des dispositifs de protection ou mettre des personnes en danger.

Mesures préventives:
Lors de l'installation de l'équipement, veiller à ce que les accessoires (p. ex. trépied, embase, distancemètre avec contrepoids, câble de liaison, etc.) soient adaptés, montés et verrouillés correctement. Protéger l'équipement contre des chocs mécaniques.

L'instrument ne doit jamais être mis en station sans être fixé sur le plateau du trépied. Par conséquent, après avoir posé l'instrument, serrer immédiatement la vis de serrage centrale, ranger l'instrument immédiatement après avoir desserré cette vis.
AVERTISSEMENT: Une destruction non conforme de l'équipement présente les dangers suivants:
• En brûlant, les éléments en matière synthétique dégagent des gaz toxiques pouvant affecter la santé.
• Lorsqu'elles sont endommagées ou exposées à une chaleur élevée, les batteries peuvent exploser et être à l'origine d'intoxications, d'une corrosion, d'une pollution ou de brûlures.
• Une destruction inadéquate accroît le risque d'une utilisation non conforme de l'équipement par une personne non autorisée. Il peut en résulter des blessures graves pour l'opérateur et pour des tiers de même que la libération de substances polluantes.
• Des fuites d'huile de silicone du compensateur peuvent endommager des blocs d'éléments optiques et électroniques.

Mesures préventives:
Assurer une destruction conforme des instruments. Respecter les réglementations locales en vigueur. Empêcher tout accès non autorisé à l'équipement.

ATTENTION: Il peut y avoir un danger d'incendie lors de l'expédition ou de l'élimination de batteries chargées soumises à des influences mécaniques inadéquates.

Mesures préventives:
Expédiez ou éliminez uniquement votre équipement avec des batteries déchargées (mettre l'instrument en mode tracking jusqu'à obtenir une décharge complète).
Classification des lasers

ATTENTION:
Faites réparer les tachéomètres électroniques uniquement par un atelier du service-client Leica Geosystems.

Plomb laser

Ce produit est un laser de classe 2 selon:
• IEC 60825-1:1993 "Sécurité des équipements laser"

Produits de classe laser 2 / II:
Ne pas regarder dans le rayon laser et ne pas le diriger inutilement sur d'autres personnes. La protection de l'œil est normalement garantie grâce aux réflexes de détournement des yeux ou de fermeture des paupières.

Ce produit est un laser de classe 2 selon:
Etiquetage selon

Rayonnement laser
Ne pas regarder dans le faisceau
Appareil à laser de classe 2 selon IEC 60825-1:1993

\[P_o \leq 0.95 \text{ mW} \]
\[\lambda = 620 - 690 \text{ nm} \]

\[\Rightarrow \]

CAUTION
LASER RADIATION - DO NOT STARE INTO BEAM
620–690 nm: 0.95 mW max.
CLASS II LASER PRODUCT

AVOID EXPOSURE
Laser radiation is emitted from this aperture

Consignes de sécurité
Divergence des rayons 0.16 x 0.6 mrad
Durée d'impulsion c.w.
Puissance de sortie max. 0.95 mW
Incertitude de mesure ±5%
Nous qualifions de compatibilité électromagnétique l’aptitude des théodolites électroniques à fonctionner impeccablement dans un environnement de rayons électromagnétiques et de décharges électrostatiques, sans influencer électromagnétiquement d'autres appareils.

ATTENTION:
Lorsque les théodolites électroniques sont utilisés en combinaison avec des appareils étrangers (par ex. PC, appareils radio...), d’autres appareils peuvent subir des perturbations.

Mesure préventive:
N'utiliser que des équipements et accessoires recommandés par Leica Geosystems. Combinés aux théodolites électroniques, ils répondent aux exigences des directives et normes. En cas d'utilisation d'ordinateurs et appareils radio, respecter les instructions du fabricant sur la compatibilité électromagnétique.

ATTENTION:
Des perturbations résultant de champs électromagnétiques peuvent entraîner un dépassement de tolérances dans les mesures.

Bien que les théodolites électroniques respectent rigoureusement les directives et normes correspondantes, Leica Geosystems ne peut entièrement exclure le risque que les instruments ne subissent de perturbations sous l'effet d'un rayonnement électromagnétique très intense, par exemple à proximité d'émetteurs radio, de talkies-walkies, générateurs diesel, etc.

Si l'on effectue des mesures dans ces conditions, il est recommandé de vérifier la plausibilité des résultats.
AVERTISSEMENT: Cet équipement a été testé et ses limites sont conformes à celles des instruments numériques de classe B, décrites dans le paragraphe 15 des règles FCC. Ces limites ont pour but d’offrir une protection raisonnable contre des interférences nocives dans une installation résidentielle. Cet équipement engendre, utilise et émet une énergie fréquence radio et, s’il n’est pas installé et utilisé conformément aux instructions, peut engendrer des perturbations dans la réception radio. On ne peut cependant exclure l’apparition de perturbations dans certaines installations.

Si cet appareil engendre des perturbations dans la réception radiophonique ou télévisuelle, constatées en éteignant puis en rallumant l’appareil, l’utilisateur peut tenter de corriger ces interférences en prenant les mesures suivantes:
• Remplacer ou repositionner l’antenne collectrice.
• Augmenter la distance entre l’appareil et le récepteur.
• Connecter la prise de l’appareil sur un autre circuit que celle du capteur.
• En se faisant aider par son vendeur ou un technicien.

AVERTISSEMENT: Les changements ou modifications n’ayant pas été expressément indiqués par Leica Geosystems peuvent limiter le droit de l’utilisateur à faire fonctionner son instrument.

Inscription sur le produit:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:
(1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
Entretien et stockage

Transport

Il faut toujours utiliser les emballages Leica Geosystems pour le transport ou les expéditions du produit (coffret de transport et carton d'expédition).

Après une longue période de stockage ou de transport, il faut toujours contrôler les ajustages indiqués dans ce mode d'emploi avant de remettre l'instrument en service.

Sur le terrain

Lors du transport de votre équipement sur le terrain, veillez toujours à ce que
- l'instrument soit transporté dans le coffret
- ou que le trépied avec l'instrument monté et vissé soit porté verticalement sur l'épaule.
Il faut toujours arrimer l'instrument lorsqu'il est à l'intérieur d'un véhicule.
L'instrument peut être endommagé par les chocs ou les vibrations. C'est la raison pour laquelle il doit être emballé et soigneusement arrimé.

Pour une expédition par chemin de fer, avion ou bateau, utiliser les emballages Leica Geosystems d'origine (coffret de transport et carton d'expédition), ou à défaut un emballage assurant une protection suffisante contre les vibrations et les chocs.

Respecter les valeurs limites de températures lors du stockage de votre équipement, en particulier l'été, quand vous conservez votre équipement à l'intérieur du véhicule.

Même dans un bâtiment, toujours entreposer l'instrument dans son emballage de transport et si possible dans un endroit sûr.
Nettoyage

Déballer les appareils mouillés. Essuyer et nettoyer l'instrument, le coffret de transport, les pièces intercalaires en mousse et les accessoires, les sécher (sans dépasser 40°C/108°F). N'emballer à nouveau l'équipement que lorsqu'il est complètement sec.

Refermer le coffret de transport lorsqu'on utilise l'instrument sur le terrain.

Objectif, oculaire et prisms:
- souffler sur les lentilles et les prisms pour enlever la poussière
- ne pas toucher le verre avec les doigts
- nettoyer seulement avec un chiffon propre et doux. Si nécessaire, humidifier légèrement avec de l'alcool pur.

Ne pas utiliser d'autres liquides, étant donné que ces derniers peuvent attaquer le plastique.
Contrôle et ajustage

Trépied

Les liaisons entre le métal et le bois doivent toujours être bien stables.
- Serrer modérément les vis à six pans creux (2).
- Serrer les articulations de la tête du trépied (1) de manière à ce que les pieds du trépied conservent leur position écartée même après avoir été soulevés du sol.

Bulle de la nivelle sphérique

Commencer par caler l'instrument avec précision à l'aide de la nivelle électronique. La bulle de la nivelle sphérique doit être centrée. Si elle sort du cercle, elle doit être recentrée en utilisant la clé à six pans fournie avec l'instrument.

Aucune vis ne doit être desserrée après le réglage.

Bulle de la nivelle de l'embase

Caler l'instrument à l'horizontale et le retirer de l'embase. Si la bulle ne se trouve pas à l'intérieur du cercle, corriger le réglage en agissant avec la broche sur les deux vis à tête percée.

Rotation des vis:
- à gauche: la bulle s'approche de cette vis
- à droite: la bulle s'écarte de la vis.

Aucune vis ne doit être desserrée après le réglage.
Le plomb laser est disposé dans l’axe vertical de l’instrument. Dans des conditions d’utilisation normales, un ajustage de ce dispositif n’est pas nécessaire. Si des facteurs extérieurs influent sur le plomb laser et vous obligent à un ajustage, celui-ci doit être impérativement effectué dans un atelier de maintenance Leica Geosystems.

Contrôle par rotation de 360° de l’instrument:
1. Placer l’instrument sur le trépied et le niveler à environ 1.5m au-dessus du sol.
2. Allumer le plomb laser et marquer le centre de la tache rouge.
3. Tourner lentement l’instrument et observer la tache rouge sur le sol.

Le contrôle du plomb laser se fait sur une surface claire, plane et horizontale (par exemple, une feuille de papier).

Si le centre du point laser décrit un mouvement circulaire net ou si le centre du point laser se déplace de plus de 3 mm du point originellement marqué, un ajustage peut être nécessaire. Veuillez-vous renseigner auprès de l’atelier Leica Geosystems le plus proche.

La taille du point laser peut varier en fonction de la clarté et de la surface. Pour une distance de 1.5 m, on obtient généralement un point d’un diamètre de 2.5 mm.

Le diamètre de rotation maximal du centre de point laser ne doit pas dépasser 3 mm pour une distance de 1.5 m.
Contrôle par rotation du réticule

1. Viser un point quelconque A avec le centre du réticule.
2. Avec le mouvement vertical, faire tourner la lunette vers le haut jusqu'à la limite du champ de vision (point A1).
3. Si le point A reste sur la ligne verticale, aucun ajustage n'est nécessaire.

Ajustage

1. Si le point s'écarte de la ligne verticale du réticule, enlever le couvercle des vis d'ajustage de l'oculaire.
2. Desserrer à l'aide de l'outil fourni les 4 vis d'ajustage de façon homogène. Faire tourner le réticule autour de son centre jusqu'à ce que la ligne verticale soit sur le point A.
3. Resserrer symétriquement les vis d'ajustage et répéter ce contrôle jusqu'à ce que l'ajustage soit correct.
1) Chargeur de batterie (EU, US, UK, AU, JP)
2) Batterie GEB111 (Art.No. 667318)
3) Batterie GEB121 (Art.No. 667123)
4) Adaptateur de batterie GAD39 (Art.No. 712156)
5) Embase amovible GDF101 (Art.No. 714793)
6) Oculaire zénithal GFZ2 (Art.No. 721966)
7) Prospectus : Surveying made easy (disponible en anglais (Art. No. 722510) et en allemand (Art. No. 722383))
8) Ruban GHM007 (Art.No. 667718) Ecarteur GHT196 (Art.No. 722045)
Compensateur hors du domaine de mesure

Cet avertissement apparaît dès lors que le compensateur arrive en dehors de son domaine de mesure.

L'affichage disparaît lorsque l'utilisateur :
• cale l'instrument à l'horizontale
• désactive le compensateur

Seule les touches et restent actives pendant cet affichage.

Batterie vide

Cet avertissement apparaît dès que la batterie est vide et reste affiché pendant environ 10 secondes.

Remplacer la batterie et continuer les mesures.

Compensateur

Ce message d'erreur apparaît lorsque survient une erreur du système nécessitant un recours au service après-vente Leica Geosystems. Le numéro d'erreur est également affiché.

Faire corriger cette erreur par le service après-vente Leica Geosystems le plus proche.
Messages et Avertissements, suite

Collimation-Hz (c)

Collimation-V (i)

Temperature

Ce message d'erreur apparaît si la nouvelle valeur de l'erreur de collimation excède la valeur limite (± 0.1 gon) lors de la détermination de l'erreur de collimation Hz.

La fonction est arrêtée et l'ancienne valeur de "c" reste active; retour au menu Mesure.

Seules les touches et restent actives pendant cet affichage.

Ce message d'erreur apparaît si la nouvelle valeur de l'erreur de collimation excède la valeur limite (± 0.1 gon) lors de la détermination de l'erreur de collimation verticale.

La fonction est arrêtée et l'ancienne valeur de "i" reste active; retour au menu Mesure.

Seules les touches et restent actives lors de cet affichage.

Ce message d'erreur apparaît lorsque la température ambiante excède les spécifications (-20°C à +50°C; -4°F à +122°F).

L'instrument s'éteint automatiquement (mesure de protection !).
Données techniques

Lunette:
- Retournement complet
- Image verticale
- Diam. Objectif: 40 mm (1.57 in)
- Visée minimale: 1.6 m (5.2 ft)
- Champ visuel: 1°21’ 23.6 m/km (124.6 ft/ml)
- Grossissement: 30x

Mesure angulaire:
- Absolue, continue
- Unités d’angle utilisables:
 - 360° sexagesimal
 - 400gon
 - 360° decimal
 - 6400 mil
- Ecart type (suivant ISO 17123-3):
 - T105: 5" (1.5 mgon)
 - T110: 10" (3.0 mgon)
- Affichage:
 - 360s 1"
 - 360d 0.001°
 - mil 0.01 mil

Nivelle sphérique:
- Sensibilité des nivelles: 6’ / 2 mm

Plomb laser:
- Dans l'alidade, tourne avec l'instrument
- suivant: 3 mm / 1.5m
- Ø du point laser: 2.5mm / 1.5m

Compensateur:
- Compensateur à huile
- Plage de calage: V-angle comp. ±4’ (±0.07 gon)
Données techniques, suite

Clavier:
• Angle d’inclinaison 70°
• Surface à la base 110x75 mm
• Nombre de touches 7

Affichage:
• Par rétroéclairage
• LCD: 144x64 Pixel
• Chauffable (Temp. < -5°C)

Types d'embases:
• Types d'embases GDF101
 Pas de vis: 5/8” (DIN 18720 / BS 84)
• Embase coulissante GUS75
 Pas de vis: M35x2 (DIN 13)
 avec adaptateur 5/8”

 Corrections automatiques:
• Erreur de collimation horizontale
• Index vertical

Dimensions:
• Instrument:
 Hauteur (y compris embase et poignée de transport):
 - avec embase GDF111: 360 mm ± 5 mm
 - avec embase coulissante: 357 mm ± 5 mm
 Largeur: 151 mm
 Longueur: 203 mm
• Poids
 avec batterie GEB111 et embase :
 - avec embase GDF111: 4.46 kg
 - avec embase coulissante: 4.68 kg
 sans batterie et embase: 3.69 kg
• Coffret: 468x254x355mm (LxBxH)

Hauteur de l’axe des tourillos:
• sans embase: 195.7 mm
• avec embase GDF111: 240 mm ± 5 mm
• avec embase coulissante: 237 mm ± 5 mm

Alimentation:
• Batterie GEB111: NiMh (0% Cadmium)
 Voltage: 6V, 1800 mAh
 Durée d'utilisation: 10h
• Batterie GEB121: NiMh (0% Cadmium)
 Voltage: 6V, 3600 mAh
 Durée d'utilisation: 20h
• Adaptateur de batterie GAD39:
 6 x LR6/AA/AM3, 1.5V, seulement batteries alcalines

Plage de temperature:
• Stockage: -40°C à +70°C
 -40°F à +158°F
• Usage: -20°C à +50°C
 -4°F à +122°F
Mots clés, suite

L Ligne de visée ... 8
 Lignes stadimétriques .. 26
 Lisibilité ... 33

M Mesure .. 57
 Mise en place de la batterie 14
 Mise en station .. 19

N Nivelle .. 19, 53
 Nivelle électronique .. 10, 19

O Oculaire zénithal GFZ2 ... 56

P Pieds du trépied .. 53
 Plomb laser ... 10, 17
 Positions de la lunette ... 9, 38

R Rapide et simultanée .. 10
 Réglage du contraste ... 33
 Remarques importantes 41, 42, 43, 44
 Remplacement de la batterie 14
 Réticule ... 9

S Sens contraire des aiguilles 21
 Sens des aiguilles .. 21
 Stockage ... 50

T Temperature .. 58
 Touche Combi ... 10
 Touches de fonction .. 10
 Touches des angles ... 10
 Touches ON / OFF ... 10

V Valeurs limites de températures 51

Z Zénith .. 9
Leica Geosystems AG Heerbrugg dispose d’un système international de qualité conforme au standard international pour la gestion de qualité et des systèmes de qualité (ISO 9001) et le système de gestion de l’environnement (ISO 14001).

Total Quality Management - notre engagement pour la satisfaction totale des clients.

Vous pouvez obtenir de plus amples informations concernant notre programme TQM auprès du représentant Leica Geosystems le plus proche.